\(\int \frac {a+b \text {csch}^{-1}(c x)}{x^2 (d+e x)^{5/2}} \, dx\) [74]

   Optimal result
   Rubi [N/A]
   Mathematica [N/A]
   Maple [N/A] (verified)
   Fricas [N/A]
   Sympy [F(-1)]
   Maxima [N/A]
   Giac [N/A]
   Mupad [N/A]

Optimal result

Integrand size = 21, antiderivative size = 21 \[ \int \frac {a+b \text {csch}^{-1}(c x)}{x^2 (d+e x)^{5/2}} \, dx=\text {Int}\left (\frac {a+b \text {csch}^{-1}(c x)}{x^2 (d+e x)^{5/2}},x\right ) \]

[Out]

Unintegrable((a+b*arccsch(c*x))/x^2/(e*x+d)^(5/2),x)

Rubi [N/A]

Not integrable

Time = 0.08 (sec) , antiderivative size = 21, normalized size of antiderivative = 1.00, number of steps used = 0, number of rules used = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \[ \int \frac {a+b \text {csch}^{-1}(c x)}{x^2 (d+e x)^{5/2}} \, dx=\int \frac {a+b \text {csch}^{-1}(c x)}{x^2 (d+e x)^{5/2}} \, dx \]

[In]

Int[(a + b*ArcCsch[c*x])/(x^2*(d + e*x)^(5/2)),x]

[Out]

Defer[Int][(a + b*ArcCsch[c*x])/(x^2*(d + e*x)^(5/2)), x]

Rubi steps \begin{align*} \text {integral}& = \int \frac {a+b \text {csch}^{-1}(c x)}{x^2 (d+e x)^{5/2}} \, dx \\ \end{align*}

Mathematica [N/A]

Not integrable

Time = 34.94 (sec) , antiderivative size = 23, normalized size of antiderivative = 1.10 \[ \int \frac {a+b \text {csch}^{-1}(c x)}{x^2 (d+e x)^{5/2}} \, dx=\int \frac {a+b \text {csch}^{-1}(c x)}{x^2 (d+e x)^{5/2}} \, dx \]

[In]

Integrate[(a + b*ArcCsch[c*x])/(x^2*(d + e*x)^(5/2)),x]

[Out]

Integrate[(a + b*ArcCsch[c*x])/(x^2*(d + e*x)^(5/2)), x]

Maple [N/A] (verified)

Not integrable

Time = 0.17 (sec) , antiderivative size = 19, normalized size of antiderivative = 0.90

\[\int \frac {a +b \,\operatorname {arccsch}\left (c x \right )}{x^{2} \left (e x +d \right )^{\frac {5}{2}}}d x\]

[In]

int((a+b*arccsch(c*x))/x^2/(e*x+d)^(5/2),x)

[Out]

int((a+b*arccsch(c*x))/x^2/(e*x+d)^(5/2),x)

Fricas [N/A]

Not integrable

Time = 0.26 (sec) , antiderivative size = 53, normalized size of antiderivative = 2.52 \[ \int \frac {a+b \text {csch}^{-1}(c x)}{x^2 (d+e x)^{5/2}} \, dx=\int { \frac {b \operatorname {arcsch}\left (c x\right ) + a}{{\left (e x + d\right )}^{\frac {5}{2}} x^{2}} \,d x } \]

[In]

integrate((a+b*arccsch(c*x))/x^2/(e*x+d)^(5/2),x, algorithm="fricas")

[Out]

integral(sqrt(e*x + d)*(b*arccsch(c*x) + a)/(e^3*x^5 + 3*d*e^2*x^4 + 3*d^2*e*x^3 + d^3*x^2), x)

Sympy [F(-1)]

Timed out. \[ \int \frac {a+b \text {csch}^{-1}(c x)}{x^2 (d+e x)^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate((a+b*acsch(c*x))/x**2/(e*x+d)**(5/2),x)

[Out]

Timed out

Maxima [N/A]

Not integrable

Time = 3.03 (sec) , antiderivative size = 316, normalized size of antiderivative = 15.05 \[ \int \frac {a+b \text {csch}^{-1}(c x)}{x^2 (d+e x)^{5/2}} \, dx=\int { \frac {b \operatorname {arcsch}\left (c x\right ) + a}{{\left (e x + d\right )}^{\frac {5}{2}} x^{2}} \,d x } \]

[In]

integrate((a+b*arccsch(c*x))/x^2/(e*x+d)^(5/2),x, algorithm="maxima")

[Out]

1/6*b*((2*(15*(e*x + d)^2*e^2 - 10*(e*x + d)*d*e^2 - 2*d^2*e^2)/((e*x + d)^(5/2)*d^3 - (e*x + d)^(3/2)*d^4) +
15*e^2*log((sqrt(e*x + d) - sqrt(d))/(sqrt(e*x + d) + sqrt(d)))/d^(7/2))*log(c)/e - 6*integrate(log(x)/(sqrt(e
*x + d)*e^2*x^4 + 2*sqrt(e*x + d)*d*e*x^3 + sqrt(e*x + d)*d^2*x^2), x) + 6*integrate(log(sqrt(c^2*x^2 + 1) + 1
)/(sqrt(e*x + d)*e^2*x^4 + 2*sqrt(e*x + d)*d*e*x^3 + sqrt(e*x + d)*d^2*x^2), x)) - 1/6*a*(2*(15*(e*x + d)^2*e
- 10*(e*x + d)*d*e - 2*d^2*e)/((e*x + d)^(5/2)*d^3 - (e*x + d)^(3/2)*d^4) + 15*e*log((sqrt(e*x + d) - sqrt(d))
/(sqrt(e*x + d) + sqrt(d)))/d^(7/2))

Giac [N/A]

Not integrable

Time = 0.26 (sec) , antiderivative size = 21, normalized size of antiderivative = 1.00 \[ \int \frac {a+b \text {csch}^{-1}(c x)}{x^2 (d+e x)^{5/2}} \, dx=\int { \frac {b \operatorname {arcsch}\left (c x\right ) + a}{{\left (e x + d\right )}^{\frac {5}{2}} x^{2}} \,d x } \]

[In]

integrate((a+b*arccsch(c*x))/x^2/(e*x+d)^(5/2),x, algorithm="giac")

[Out]

integrate((b*arccsch(c*x) + a)/((e*x + d)^(5/2)*x^2), x)

Mupad [N/A]

Not integrable

Time = 4.99 (sec) , antiderivative size = 25, normalized size of antiderivative = 1.19 \[ \int \frac {a+b \text {csch}^{-1}(c x)}{x^2 (d+e x)^{5/2}} \, dx=\int \frac {a+b\,\mathrm {asinh}\left (\frac {1}{c\,x}\right )}{x^2\,{\left (d+e\,x\right )}^{5/2}} \,d x \]

[In]

int((a + b*asinh(1/(c*x)))/(x^2*(d + e*x)^(5/2)),x)

[Out]

int((a + b*asinh(1/(c*x)))/(x^2*(d + e*x)^(5/2)), x)